Search results for " Solid-liquid suspension"
showing 6 items of 6 documents
Measurements of Njs and Power Requirements in Unbaffled Bioslurry Reactors
2012
The remediation of urban/industrial polluted lands is a topic of crucial importance nowadays. Bioremediation techniques are widely employed to remove organic pollutants from contaminated soils because of their simplicity and cheapness. The bioslurry reactors mechanically agitated by stirrers represent one of the most promising bioremediation techniques. In the present work an unbaffled stirred vessel filled with solids and water is experimentally investigated from a fluid dynamic point of view. Air presence within the tank is guaranteed by the central vortex formation (typical occurrence concerning stirred vessels unprovided with baffles) instead of an intrinsically more expensive insufflat…
Power requirements for complete suspension and aeration in an unbaffled bioslurry reactor
2016
Remediation of contaminated soils is spreading as a matter of crucial importance nowadays. Bioremediation via bioslurry reactors of sites polluted by recalcitrant pollutants has been proved to be a valuable option, although optimization is needed to reduce process costs. Free-surface unbaffled stirred tanks (with central air vortex) have been recently proposed as a promising alternative to the more common systems provided with baffles. In a bioslurry reactor solid-liquid interfacial area, oxygen supply, solid loading per reactor unit volume should be maximized, and, at the same time, operation costs have to be kept low. In this regard, the minimum impeller speeds for complete suspension Njs…
CFD Predictions of Sufficient Suspension Conditions in Solid-Liquid Agitated Tanks
2012
Abstract Most research efforts on mechanically agitated solid-liquid contactors have been devoted to the assessment of the minimum impeller speed for complete off-bottom suspension, N js . Actually, many industrial vessels are operated at impeller speeds slightly lower than N js (Oldshue, 1983; Rieger et al., 1988). This suggests that the sufficient suspension condition, which is quantitatively specified in this paper by introducing a suitably defined quantity N ss , may represent a valid alternative to that of complete suspension. In the present work time-dependent RANS simulations were carried out with the aim of predicting the achievement of sufficient suspension conditions. The Eulerian…
CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution
2013
Abstract Industrial tanks devoted to the mixing of solid particles into liquids are often operated at an impeller speed N less than Njs (defined as the lowest speed allowing the suspension of all particles): under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work is devoted to assessing the capability of Computational Fluid Dynamics (CFD) in predicting the particle distribution throughout the tank. The CFD model proposed by Tamburini et al. [58] and successfully applied to the prediction of the sediment amount and shape was adopted here to simulate the particle distribution under partia…
Comparison of Agitators Performance for Particle Suspension in Top-Covered Unbaffled Vessels
2015
Power savings is a problem of crucial importance nowadays. In process industry, suspension of solid particles into liquids is usually obtained by employing stirred tanks, which often are very power demanding. Notwithstanding tanks provided with baffles are traditionally adopted for this task, recent studies have shown that power reductions can be obtained in top-covered unbaffled vessels. In the present work experiments were carried out in a top-covered unbaffled vessel with a diameter T=0.19m and filled with distilled water and silica particles. Two different turbines were tested: a standard six-bladed Rushton Turbine (RT) and a 45° four bladed Pitched Blade Turbine (PBT). For the case of …
CFD simulations of dense sloid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves
2011
Mixing of solid particles into liquids within contactors mechanically agitated by stirrers is a topic of primary importance for several industrial applications. A great research effort has been devoted to the assessment of the minimum impeller speed (Njs) able to guarantee the suspension of all particles. Conversely, only little attention has been paid so far to the evaluation of the amount of solid particles that are suspended at impeller speeds lower than Njs. In some cases the loss in available interfacial area between particles and liquid could be reasonably counterbalanced by a decreased mechanical power, making it of interest to evaluate the percentage of suspended solids at different…